

CANDIDATE NAME

## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Midde Con

| * |  |
|---|--|
| W |  |
| 9 |  |
| 4 |  |
| 0 |  |
| 9 |  |
| _ |  |
| 6 |  |
| 6 |  |
| 2 |  |
| 7 |  |
|   |  |

| CENTRE<br>NUMBER |  |   | CANDIDATE<br>NUMBER |        |        |       |
|------------------|--|---|---------------------|--------|--------|-------|
| CHEMISTRY        |  | · | ,                   |        | 062    | 20/21 |
| Paper 2          |  |   |                     | Ma     | y/June |       |
|                  |  |   |                     | 1 hour | 15 min | nutes |

Candidates answer on the Question Paper.

No Additional Materials are required.

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

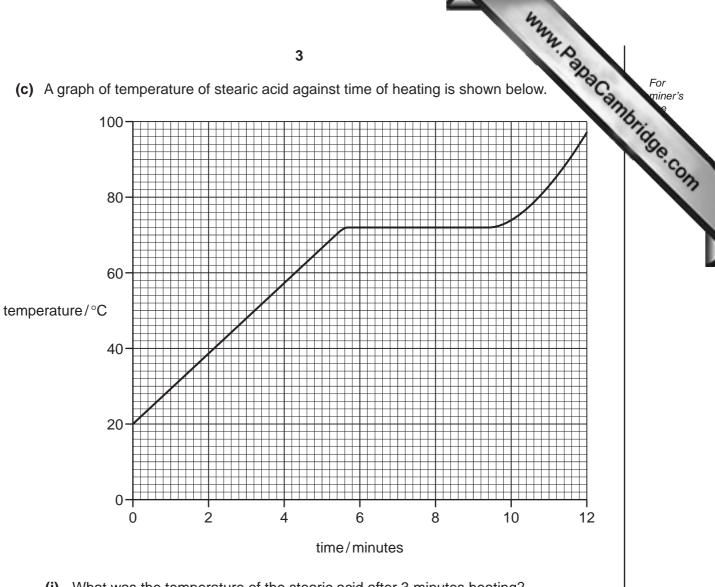
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

| For Examiner's Use |  |  |  |
|--------------------|--|--|--|
| 1                  |  |  |  |
| 2                  |  |  |  |
| 3                  |  |  |  |
| 4                  |  |  |  |
| 5                  |  |  |  |
| 6                  |  |  |  |
| 7                  |  |  |  |
| Total              |  |  |  |

This document consists of 15 printed pages and 1 blank page.




1 Stearic acid is a solid at room temperature.

www.PapaCambridge.com The diagram below shows the apparatus used for finding the melting point of stearic The apparatus was heated at a steady rate and the temperature recorded every minute.



| (a) | Sta  | te the name of the piece of apparatus labelled                         |     |
|-----|------|------------------------------------------------------------------------|-----|
|     | Α,   |                                                                        |     |
|     | В.   |                                                                        | [2] |
| (b) | (i)  | Suggest why the water needs to be kept stirred during this experiment. |     |
|     |      |                                                                        |     |
|     | (ii) | Describe a chemical test for water.                                    |     |
|     |      | test                                                                   |     |
|     |      | result                                                                 | [2] |

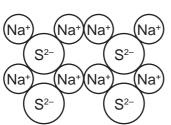
(c) A graph of temperature of stearic acid against time of heating is shown below.



| (1) | what was the temperature of the stearic acid after 3 minutes heating? |    |
|-----|-----------------------------------------------------------------------|----|
|     |                                                                       | [1 |

- (ii) Use the information on the graph to determine the melting point of stearic acid.
- (d) Describe the arrangement and motion of the particles in liquid stearic acid.

www.PapaCambridge.com (e) A sample of stearic acid contained 1% of another compound with a higher molecular mass. (i) Which one of the following statements about this sample of stearic acid is correct? Tick **one** box. Its density is exactly the same as that of pure stearic acid. Its boiling point is the same as that of pure stearic acid. Its melting point is different from pure stearic acid. Its melting point is the same as that of pure stearic acid. [1] (ii) Describe **one** area of everyday life where the purity of substances is important.


[Total: 11]

2 The diagram below shows the structure of some substances, A, B, C, D and E.



В

D



Ε



(a) (i) Which one of these substances, A, B, C, D or E, is an element?

| [1] |
|-----|
|-----|

(ii) What do you understand by the term element?

|  | F 4 | 4 7 |
|--|-----|-----|
|  | -11 | П   |

(b) Calculate the relative molecular mass of E.

[1]

(c) Write the simplest formula for **D**.

.....[1]

(d) Which substance, A, B, C, D or E, conducts electricity when it is molten? Explain your answer.

(e) The equation for the combustion of substance A is shown below.

$$2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$$

What type of chemical reaction is this? Put a ring around the correct answer.

> decomposition neutralisation oxidation reversible

> > [1]

[Total: 7]

- 3 Hydrochloric acid and ethanoic acid are both acidic in nature.
  - (a) Which one of the following is a pH value for an acidic solution. Put a ring around the correct answer.

|     |       |                                               |                   |                   |                     | 42                |      |
|-----|-------|-----------------------------------------------|-------------------|-------------------|---------------------|-------------------|------|
|     |       |                                               |                   | 6                 |                     | N. Pa             | 1    |
| Hyc | droch | loric acid and eth                            | nanoic acid are   | both acidic in r  | nature.             |                   | aCar |
| (a) |       | ch <b>one</b> of the fol<br>a ring around the |                   |                   | dic solution.       | MANA POL          |      |
|     |       | рН3                                           | pH7               | pH9               | pH13                |                   | [1]  |
| (b) | Des   | cribe how you w                               | ould use litmus   | to test if a solu | ition is acidic.    |                   |      |
|     |       |                                               |                   |                   |                     |                   |      |
|     |       |                                               |                   |                   |                     |                   | [3]  |
| (c) | Acid  | ds react with met                             | al carbonates.    |                   |                     |                   |      |
|     | (i)   | Write a word eq                               | uation for the re | eaction of calciu | um carbonate wit    | h hydrochloric ad | cid. |
|     |       |                                               |                   |                   |                     |                   |      |
|     |       |                                               |                   |                   |                     |                   |      |
|     |       |                                               |                   |                   |                     |                   | [3]  |
|     | (ii)  | Calcium carbona State <b>one</b> other        |                   |                   | soil.               |                   |      |
|     |       |                                               |                   |                   |                     |                   | [1]  |
|     | (iii) | Name one other                                | r compound tha    | t can be used     | to treat acidic soi | 1.                |      |
|     |       |                                               |                   |                   |                     |                   | [1]  |

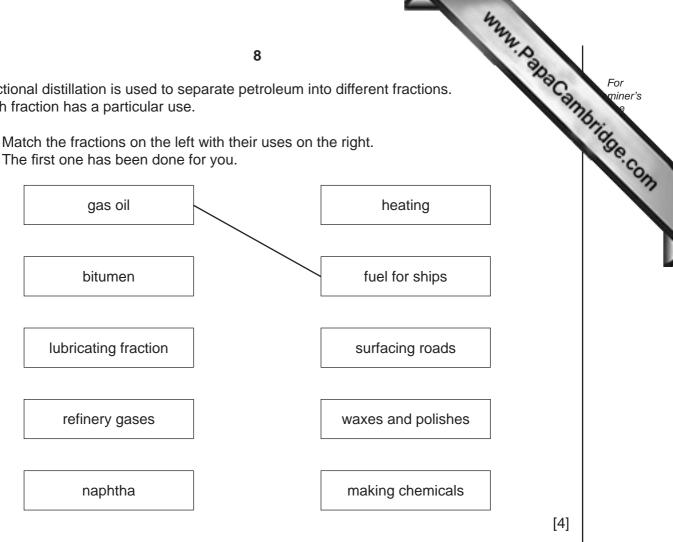
Fe + ....HCl 
$$\rightarrow$$
 FeCl<sub>2</sub> + ......

[2]

- (e) (i) Complete the table below to show:
  - the molecular formula for ethanoic acid
  - the full structural formula for ethanol.

| • the mole              | <b>7</b> e table below to show: ecular formula for ethanoic acid tructural formula for ethanol. | MMM. PapaC                      | For miner's e |
|-------------------------|-------------------------------------------------------------------------------------------------|---------------------------------|---------------|
|                         | ethanoic acid                                                                                   | ethanol                         | COM           |
| full structural formula | H—C—C<br>H—O—H                                                                                  |                                 |               |
| molecular formula       |                                                                                                 | C <sub>2</sub> H <sub>6</sub> O |               |

[2]


(ii) Ethanol can be manufactured by the catalytic addition of steam to ethene. Complete the equation for this reaction.

$$..... + ....... \rightarrow C_2H_5OH$$

[1]

[Total: 14]

- Fractional distillation is used to separate petroleum into different fractions. Each fraction has a particular use.
  - (a) Match the fractions on the left with their uses on the right. The first one has been done for you.



**(b)** Petroleum fractions contain hydrocarbons. What do you understand by the term hydrocarbon?

- (c) Methane, CH<sub>4</sub>, is a hydrocarbon.
  - (i) Draw the structure of methane, showing all atoms and bonds.

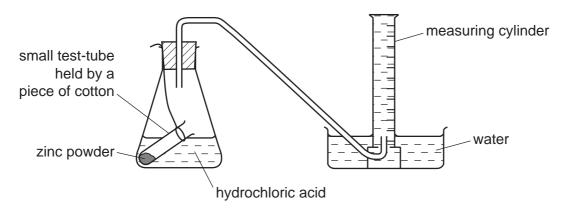
[1]

[4]

(ii) Complete the following equation for the burning of methane in excess oxygen.

$$CH_4 + ....O_2 \rightarrow ..... + 2H_2O$$

[2]


www.PapaCambridge.com (iii) Methane belongs to a homologous series called the alkanes. What do you understand by the term *homologous series*? (iv) Name the second member of the alkane homologous series. [Total: 11]

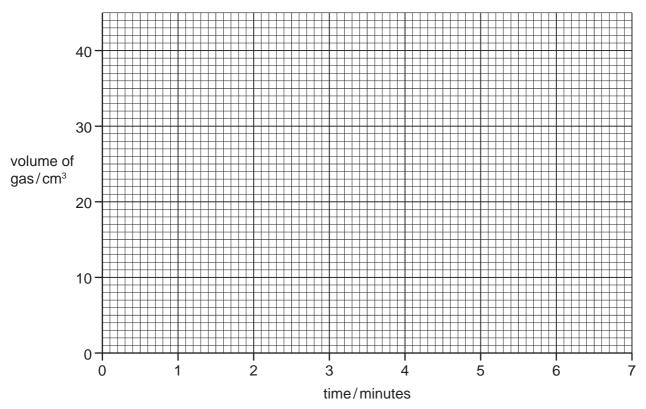
the approximation of the appro

5 A student investigated the reaction between zinc and hydrochloric acid using the apshown below.

The zinc was in excess.

zinc + hydrochloric acid → zinc chloride + hydrogen




(a) What should the student do to start the reaction?

.....[1]

**(b)** The student measured the volume of gas in the measuring cylinder at minute intervals. The results are shown in the table.

| time/minutes                  | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  |
|-------------------------------|---|----|----|----|----|----|----|----|
| volume of gas/cm <sup>3</sup> | 0 | 15 | 23 | 30 | 33 | 35 | 35 | 35 |

(i) Plot the results on the grid below and draw the best curve through the points.



|     | (ii)  | Explain why the volur        | ne of gas stays  | the same af   | ter 5 minutes.     | OBC B               |
|-----|-------|------------------------------|------------------|---------------|--------------------|---------------------|
|     |       |                              |                  |               |                    |                     |
|     |       |                              |                  |               |                    | [2]                 |
| (c) |       | nplete the following se      | entences about   | this reaction | n using words or   | phrases from the    |
|     |       | concentration                | n decre          | ases          | increases          |                     |
|     |       | speed                        | stays            | the same      | volume             |                     |
|     |       | en the                       | •                |               |                    |                     |
|     | off i | n the first two minutes .    |                  | Decreas       | sing the temperat  | ure of the reaction |
|     | mix   | ture                         | . the            | of th         | ne reaction.       | [4]                 |
| (d) |       | en the reaction is comoride. | plete, the flask | contains a    | mixture of zinc a  | and aqueous zinc    |
|     | Des   | cribe how you can obt        | ain pure dry cry | stals of zinc | chloride from this | reaction mixture.   |
|     |       |                              |                  |               |                    |                     |
|     |       |                              |                  |               |                    |                     |
|     |       |                              |                  |               |                    |                     |
|     |       |                              |                  |               |                    | [3]                 |
|     |       |                              |                  |               |                    | [Total: 13]         |

For

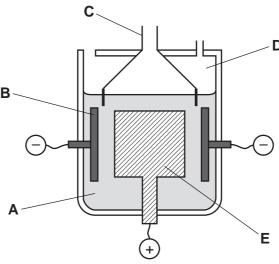
- Lithium, sodium and potassium are in Group I of the Periodic Table. 6
  - (a) The equation for the reaction of lithium with water is

$$2Li + 2H_2O \rightarrow 2LiOH + H_2$$

|     | 44                                                            |                |
|-----|---------------------------------------------------------------|----------------|
|     | 12                                                            |                |
| ium | n, sodium and potassium are in Group I of the Periodic Table. | For<br>miner's |
| Th  | ne equation for the reaction of lithium with water is         | Brig           |
|     | 2Li + 2 $H_2O \rightarrow 2LiOH + H_2$                        | 36.CC          |
| (i) | Write a word equation for this reaction.                      | ATT.           |
|     | [2]                                                           |                |

(ii) Sodium reacts with water in a similar way to lithium. Write a symbol equation for the reaction of sodium with water.

[1]


- **(b)** Describe the reactions of lithium, sodium and potassium with water. In your description, write about:
  - the difference in the reactivity of the metals

| <br> | <br> |
|------|------|
| <br> | <br> |
|      |      |
| <br> | <br> |
|      |      |

the observations you would make when these metals react with water.

| <br> | <br> |  |
|------|------|--|
|      |      |  |

www.PapaCambridge.com (c) The diagram below shows an electrolysis cell used to manufacture sodium from sodium chloride.



|     | (i)   | Which letter in the diagram above re                                                   | presents    |                   |     |
|-----|-------|----------------------------------------------------------------------------------------|-------------|-------------------|-----|
|     |       | the anode?                                                                             |             |                   |     |
|     |       | the electrolyte?                                                                       |             |                   | [2] |
|     | (ii)  | State the name of the product forme                                                    | d           |                   |     |
|     |       | at the positive electrode,                                                             |             |                   |     |
|     |       | at the negative electrode                                                              |             |                   | [2] |
| (   | (iii) | Which one of the following substance Put a ring around the correct answe               | •           | ed for the anode? |     |
|     |       | graphite iodine                                                                        | magnesium   | sodium            | [1] |
| (d) | Sta   | hium, sodium and potassium are meta<br>ate <b>two</b> other physical properties of the | ese metals. |                   |     |
|     |       |                                                                                        |             |                   |     |
|     | ۷     |                                                                                        |             |                   | [2] |

[Total: 15]

7

www.PapaCambridge.com (a) The equations A and B below show two reactions which lead to the formation rain. A S +  $O_2 \rightarrow SO_2$  $\mathbf{B} \quad \mathsf{SO}_2 + \mathsf{O}_3 \rightarrow \mathsf{SO}_3 + \mathsf{O}_2$ (i) Write a word equation for reaction A. (ii) Which two of the following statements about reaction **B** are correct? Tick two boxes. SO<sub>2</sub> is oxidised to SO<sub>3</sub> SO<sub>2</sub> is reduced to SO<sub>3</sub> O<sub>3</sub> is reduced to O<sub>2</sub> O<sub>3</sub> is oxidised to O<sub>2</sub> [2] (iii) Complete the equation to show how an aqueous solution of sulfuric acid, H<sub>2</sub>SO<sub>4</sub>, is formed from SO<sub>3</sub>.  $SO_3 + \dots \rightarrow H_2SO_4$ [1] (b) Describe and explain the effect of sulfuric acid on buildings made from limestone (calcium carbonate).

**(c)** State **one** effect of acid rain other than on buildings.

[Total: 9]

**BLANK PAGE** 

www.PapaCambridge.com

The Periodic Table of the Elements **DATA SHEET** 

|       | 0  | 4 <b>He</b> lium | 20 <b>Neon</b> 10     | 40<br><b>Ar</b><br>Argon           | 84<br>Krypton<br>36                | 131 <b>X e</b> Xenon 54             | Radon<br>86                        |                           | 175<br><b>Lu</b>                                    |
|-------|----|------------------|-----------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|---------------------------|-----------------------------------------------------|
|       | => |                  | 19 Fluorine           | 35.5 <b>C1</b> Chlorine            | 80<br><b>Br</b><br>Bromine         | 127<br>                             | At<br>Astatine<br>85               |                           | 173<br><b>Yb</b>                                    |
|       | 5  |                  | 16<br>Oxygen          | 32<br><b>S</b><br>Sulfur           | Selenium Selenium 34               | 128<br><b>Te</b><br>Tellurium<br>52 | Po<br>Polonium<br>84               |                           | 169<br><b>T B</b>                                   |
|       | >  |                  | 14 <b>N</b> itrogen 7 | 31<br>Phosphorus                   | AS<br>Arsenic                      |                                     | 209<br><b>Bis</b><br>Bismuth<br>83 |                           | 167<br><b>Fr</b>                                    |
|       | ≥  |                  | 12<br>Carbon<br>6     | 28<br><b>Si</b> licon              | 73<br><b>Ge</b><br>Germanium<br>32 | SD Tn 50                            | 207 <b>Pb</b> Lead 82              |                           | 165<br><b>H</b>                                     |
|       | ≡  |                  | 11<br>Boron<br>5      | 27<br><b>A1</b><br>Aluminium<br>13 | 70<br><b>Ga</b><br>Gallium<br>31   | 115<br>  n<br>  Indium<br>49        | 204 <b>T t</b> Thallium            |                           | 162<br><b>Dy</b>                                    |
|       |    |                  |                       |                                    | 65<br><b>Zn</b><br>Zinc<br>30      | 112 <b>Cd</b> Cadmium 48            | 201<br><b>Hg</b><br>Mercury<br>80  |                           | 159<br><b>T.</b>                                    |
|       |    |                  |                       |                                    | 64<br>Copper                       | 108<br><b>Ag</b><br>Silver<br>47    | 197<br><b>Au</b><br>Gold           |                           | 157<br><b>Gd</b>                                    |
| Group |    |                  |                       |                                    | 59 <b>Nicke</b> l Nickel 28        | 106 Pd Palladium 46                 | 195 <b>Pt</b> Platinum 78          |                           | 152<br><b>Eu</b>                                    |
| Gre   |    |                  |                       |                                    | 59<br><b>Co</b><br>Cobalt          | Rh<br>Rhodium<br>45                 | 192     <b>r</b>                   |                           | 150<br><b>Sm</b>                                    |
|       |    | T Hydrogen       |                       |                                    | 56<br><b>Fe</b><br>Iron            | Ruthenium                           | 190<br><b>Os</b><br>Osmium<br>76   |                           | Pm                                                  |
|       |    |                  |                       |                                    | Mn<br>Manganese                    | Tc<br>Technetium<br>43              | 186 <b>Re</b> Rhenium 75           |                           | 144<br><b>Nd</b>                                    |
|       |    |                  |                       |                                    | Cr<br>Chromium                     | 96<br><b>Mo</b><br>Molybdenum<br>42 | 184 <b>W</b> Tungsten 74           |                           | 141<br><b>Pr</b>                                    |
|       |    |                  |                       |                                    | 51<br>V<br>Vanadium<br>23          | 93<br><b>Nb</b><br>Niobium<br>41    | 181 <b>Ta</b> Tantalum 73          |                           | 140<br><b>Ce</b>                                    |
|       |    |                  |                       |                                    | 48 <b>T</b> Titanium               | 91 Zr                               | 178 <b>Hf</b><br>Hafnium<br>72     |                           |                                                     |
|       |    |                  |                       |                                    | Scandium                           | 89 <b>×</b>                         | 139 <b>La</b> Lanthanum *          | 227 <b>Ac</b> Actinium 89 | series<br>eries                                     |
|       | =  |                  | 9 <b>Be</b> Beryllium | 24 Mg Magnesium                    | 40 <b>Ca</b> Catcium               | Sr<br>Strontium                     | 137<br><b>Ba</b><br>Barium<br>56   | 226 <b>Ra</b> Radium 88   | anthanoid<br>Actinoid se                            |
|       | _  |                  | 7<br>Li<br>Lithium    | 23<br><b>Na</b><br>Sodium          | 39 <b>K</b> Potassium 19           | Rb<br>Rubidium                      | 133<br><b>Cs</b><br>Caesium<br>55  | Fr<br>Francium<br>87      | *58-71 Lanthanoid series<br>190-103 Actinoid series |

| [1 88 L                    |          |                                                                                            |                 |            |             |                       |                          |           |             |             |                    |                    |          |                        |                   |
|----------------------------|----------|--------------------------------------------------------------------------------------------|-----------------|------------|-------------|-----------------------|--------------------------|-----------|-------------|-------------|--------------------|--------------------|----------|------------------------|-------------------|
| Series                     | 140      | 141                                                                                        | 144             |            | 150         | 152                   | 157                      |           | 162         |             | 167                | 169                | 173      | 175                    |                   |
| id series                  | Cerium   | Praseodymium                                                                               |                 | Promethium | Samarium    | <b>Eu</b><br>Europium | Gadolinium<br>Gadolinium | <b>To</b> | Dysprosium  | Holmium.    | Erbium             | THulium<br>Thulium | Yb       | Lutetium               |                   |
| a = relative atomic mass   | 232      | n c                                                                                        | 238             | 1.0        | 79          | 559                   | 64                       |           | 8           | 9           | 200                | 200                | 0/       | -                      | 4                 |
| X = atomic symbol          | <b>T</b> | Protactinium                                                                               | <b>O</b> ranium | Neptunium  | Plutonium   | Americium             | Surin S                  | Berkelium | Californium | Einsteinium | Ferminm<br>Ferminm | Mandelevium        | Nobelium | <b>Lr</b><br>Lawrendum | W.                |
| b = proton (atomic) number | 06       | 91                                                                                         | 92              | 93         | 94          | 95                    | 96                       | 97        | 98          | 0,          | 100                | 101                | 102      | 103                    | 2.                |
|                            | The      | The volume of one mole of any gas is 24 dm $^3$ at room temperature and pressure (r.t.p.). | one mole        | of any ga  | us is 24 dı | m³ at roor            | n tempera                | ature and | pressure    | (r.t.p.).   |                    | 1                  | age con  | Cambridge              | and Cambridge Com |
|                            |          |                                                                                            |                 |            |             |                       |                          |           |             |             |                    |                    |          |                        |                   |

Key

The volume of one mole of any gas is 24 dm<sup>3</sup> at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.